DailyDirt: Quantum Computing Works Now (Sorta)
from the urls-we-dig-up dept
If you haven't heard about quantum computing, it's an alternative to "classical computing" that relies on some strange properties of quantum physics. Sure, the computer (or whatever device) you're reading this on also relies on physics a bit, but it stores information digitally as ones and zeroes -- and not some superposition of two states of matter in an array. A few organizations are working on quantum computers (e.g., Google, NASA, D-Wave, Cambridge Quantum Computing, Yale Quantum Institute, Microsoft, IBM, etc.), but the true potential is still just slightly out of reach (for now).- A D-Wave quantum computer tested by Google (and hosted by NASA) has been demonstrated to outperform a traditional computer -- at least for one very specific task. Google has been trying to see what it can do with more and more qubits, and it looks like if Google and D-Wave can keep adding more qubits to their system, they might actually get a quantum computer that can beat our old digital computers (without rigging up a contrived test). [url]
- Cambridge Quantum Computing is working on a quantum computer operating system. It's a bit difficult to imagine how an operating system is created when the underlying hardware can potentially be built in numerous (and sometimes unproven) ways. [url]
- Curious folks can play with a virtual 22-qubit quantum computer -- the Quantum Computing Playground (from Google). This demo runs in a browser and just simulates how a quantum computer could work with a scripting language. This isn't going to print "Hello, World!" a gazillion times. [url]
- If you're wondering what quantum computers might be good for, one of the examples is "optimization problems" -- such as a class of math problems that are NP hard, like the traveling salesman problem. Some folks think quantum computing will unlock a breakthrough for artificial intelligence, allowing computers to "brute force" their way into tackling complex problems without having to invent faster and smaller semiconducting chips. (But there's a chance that we'll have to figure out how to invent ways to make more and more qubits?) [url]
Filed Under: np hard, operating system, optimization, quantum computers, quantum computing playground, quantum physics, qubits, shor's algorithm
Companies: cambridge quantum computing, d-wave, google, ibm, microsoft, nasa, yale quantum institute